

Learning Outcomes

- Magnetic field gradients form the basis of MR signal localization
- 2D slices are produced by the combination of an excitation RF pulse and simultaneous slice-select gradient
- The in-plane MR signal is encoded in terms of the spatial frequencies of the object using **phase-encoding and frequency-encoding gradients**
- We sample every spatial frequency that exists within the image and then
 Fourier transform these data (known as k-space) to produce an image
- Inadequate or erroneous k-space sampling leads to certain artifacts

Magnetic Resonance Imaging or Tomography

- Tomography:
 - Tomos: cut, sectionGraphein: to write
- → Signal measured as a function of space

www.uib.no

Imaging Gradients

- There are coils which produce the main magnetic field (B₀ = 7T in our case).
- In addition, there are several other coils making small, additional magnetic fields which vary linearly in space. These are called gradient coils.
- These small additional magnetic fields are present in X, Y and Z direction. Without them, we can not say where in the tissue the signals come from.

Slice, Phase and Frequency Encoding in K-Space

- **Slice-encoding:** a combination of an RF pulse and a gradient excites spins within a plane → slice-selective gradient
- Phase-encoding: a constant gradient is applied for a specific duration <u>before acquisition</u> of the signal for every phaseencoding step
- **Frequency-encoding:** a constant readout gradient is applied during acquisition of the signal (echo)
- Total scan time: NSA x N_{PE} x TR

The K-Space

- Think of it as temporary image space
- Data is collected in k-space and then FT to image space
- The matrix size of the final image is the same as the matrix size of k-space
- There is no pixel-to-pixel correspondence between k-space and image space; instead, each pixel of image space contains information from the entire k-space, and vice-versa
- Data in the middle of k-space contain SNR and contrast information
- Data from the edges of k-space contain all the information about the image resolution

Time domain, Frequency domain, K-space and Image domain: How it all relates?

Time Domain
$$\rightarrow$$
 FT \rightarrow Temporal Frequency Domain $t \rightarrow$ FT $\rightarrow f$ seconds \rightarrow FT \rightarrow Hz

K-space domain or Spatial Frequency Domain \rightarrow IFT \rightarrow Image Domain $k \rightarrow$ IFT \rightarrow r $1/\text{cm} \rightarrow$ IFT \rightarrow cm

Back to Image Encoding: Larmor Frequency

$$f = \frac{\gamma}{2\pi} B_0 \text{ or } \omega = \gamma B_0$$

$$\frac{\gamma}{2\pi} = 42 \text{ MHzT}^{-1} \quad \gamma = 2.67 \times 10^8 \text{ radians s}^{-1} \text{ T}^{-1}$$

Spin precession is proportional to magnetic field strength

Signal localization

Sir Joseph Larmor

www.uib.no

Magnetic Field Gradients

• Gradient = spatially-linear variation in the static field strength in the z-direction

$$G_x = \frac{\partial B_z}{\partial x}$$
 $G_y = \frac{\partial B_z}{\partial y}$ $G_z = \frac{\partial B_z}{\partial z}$

$$B_z(x) = B_0 + x \cdot G_x$$

$$B_z(y) = B_0 + y \cdot G_y$$

$$B_z(z) = B_0 + z \cdot G_z$$

Magnetic Field Gradients: Spin Phase

 What happens to the MR signal if we apply a gradient field for a period of time (and then turn it off)?

- Dephasing of spins → Fanning out
- Angle of dephasing depends on the strength of the gradient and its duration

Slice Selection: Selective Excitation

- Applying RF pulse with desired spectrum results in transversal magnetization in selected slice
- Slices with sharp transitions are desired (distinct slices)
- Envelope function of RF pulse approximates the sinc function

www uib no

Frequency Encoding

- Applying gradient (e.g. along x direction) during readout
- Larmor frequency: $\omega_0(x) = \gamma(B_0 + G_{FE}x)$
- Amplitude of measured signal is 1D projection of the object along frequency-encoding direction

Phase Encoding

We now encoded the signal along x (readout) direction. Can we do the same for the y direction?

- No, the frequency encoding method works only in 1 spatial dimension
- Combining gradients (x and y, for instance) would lead to an oblique slice in the frequency-encoding direction
- Another mechanism must be employed to encode the second dimension -> Phase encoding

Stepping through K-Space

- To reconstruct an image, k-space has to be adequately sampled
- Different sampling techniques
 - Minimization of imaging artifacts
 - Time-saving techniques
- Steps through k-space: $\Delta k_x = \gamma G_{FE} \Delta t$ $\Delta k_y = \gamma \Delta G_{PE} T_y$

TERS!

Relationship between k-space and image resolution and FOV FOV, FOV = 1/Δk FOV = 1/Δk Ax = 1/FOV,

Video 2: Introduction to k-space

Introductory NMR and MRI with Paul Callaghan

Video 9
Part I: Introduction to k-space

www.uib.no

References

- D. W. McRobbie, E. A. Moore, M. J. Graves, M. R. Prince: MRI: From Picture to Proton, 2nd edition, Cambridge University Press, Cambridge, 2006.
- Joseph P. Hornak: The Basics of MRI: http://www.cis.rit.edu/htbooks/mri/inside.htm
- http://epileptologie-bonn.de/cms/upload/homepage/lehnertz/JKoch_MRISignaltolmage.pdf

