CONTRAST (CNR) IN MRI

www.uib.no

Computing CNR

- CNR (contrast-to-noise ratio) is a measure of how distinguishable two structures are from each other.
- For magnitude images (most commonly used in MRI), the contrast-to-noise ratio is:

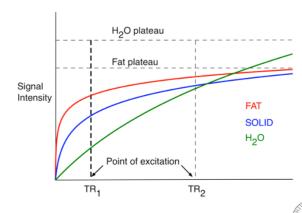
$$CNR = SNR_1 - SNR_2 = \frac{0.655 \cdot \left(S_1 - S_2\right)}{\sigma_{oir}}$$

- This relationship tells us that:
 - High SNR does not mean high CNR
 - High CNR necessitates regions with high and regions with low SNR (i.e., bright and dark regions)

Factors Influencing CNR in MRI

- · Physical and instrumental parameters
 - Magnetic field strength (through T₁ field dependence)
 - Contrast agents (through T₁ dependence)
 - Proton density
 - T_1 and T_2 relaxation times of protons in tissue
 - Diffusion coefficient of water in tissue (microstructure environment)
- Imaging sequence parameters
 - Repetition time, TR
 - Echo time, TE
 - Flip angle, α
 - Inversion time, TI
 - Etc (diffusion time, flow parameters, etc...)

www.uib.no

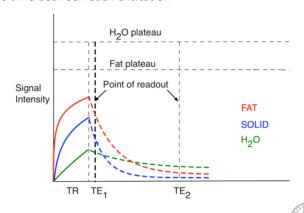

CNR: T_1 and Repetition Time

$$S_{MRI} = \iiint M_0(x, y, z)e^{-i\omega_0 t}e^{-TE/T_2} (1 - e^{-TR/T_1}) f(G(t)) dx dy dz$$

TR (relaxation time) is time between each excitation

 T_1 differs among tissue types, depending on the efficiency of energy transfer:

- H₂O, liquids have long T₁
- Fats have short T_1
- Solids have intermediate T_1


CNR: T_1 and Repetition Time

$$S_{MRI} = \iiint M_0(x, y, z)e^{-i\omega_0 t}e^{-TE/T_2} (1 - e^{-TR/T_1})f(G(t))dxdydz$$

TR (relaxation time) is time between each excitation

 T_1 differs among tissue types, depending on the efficiency of energy transfer:

- H₂O, liquids have long T₁
- Fats have short T_1
- Solids have intermediate T_1

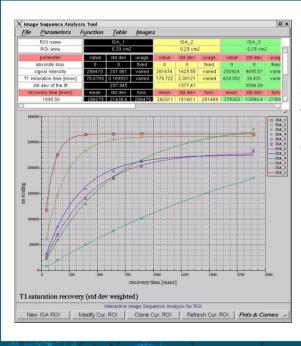
www.uib.no

CNR: T₁- Weighted Images

- T_1 -weighted images produce contrast based on differences in T_1 -relaxation times of tissues
- For T_1 contrast (T_1 -weighting), we need:
 - Short TR times to enhance T₁ weighting
 - **Short TE** times times to minimize T_2 weighting

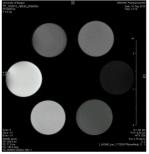
$$S_{MRI} \propto \rho_0 \left(1 - e^{-TR/T_1} \right)$$

ET ERS / PO


CNR: T_1 - Weighted Images

• Demonstration:

- Collect an image of the contrast phantom:
 - Use spin-echo sequence with short TR (200 ms) and short TE (11 ms)
- Observe contrast between different samples
- Explain

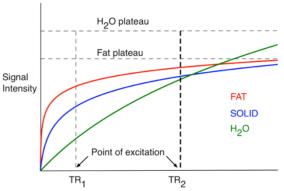


www.uib.no

Phantom = 6 tubes:

- 1. Doped water, $T_1 \approx 100 \text{ ms}$
- 2. Doped water, $T_1 \approx 200 \text{ ms}$
- 3. Doped water, $T_1 \approx 500 \text{ ms}$
- 4. water, *T*₁≈3000 ms
- 5. Cooking oil
- 6. Motor oil

TR=200 ms, TE=11 ms


CNR: T_2 and Echo Time

$$S_{MRI} = \iiint M_0(x, y, z) e^{-i\omega_0 t} e^{-TE/T_2} \left(1 - e^{-TR/T_1}\right) f(G(t)) dx dy dz$$

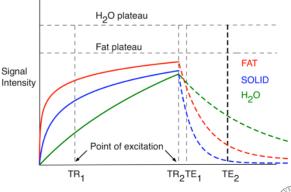
TE (echo delay time) is time between between excitation and readout of the signal

T₂ differs among tissue types,depending largely on the mobility of spins:

- H₂O, liquids have long T₂
- Fats have intermediate T_2
- Solids have short T₂

www.uib.no

CNR: T_2 and Echo Time


$$S_{MRI} = \iiint M_0(x, y, z)e^{-i\omega_0 t}e^{-TE/T_2} (1 - e^{-TR/T_1})f(G(t))dxdydz$$

TE (echo delay time) is time between between excitation and readout of the signal

T₂ differs among tissue types, depending largely on the mobility of spins:

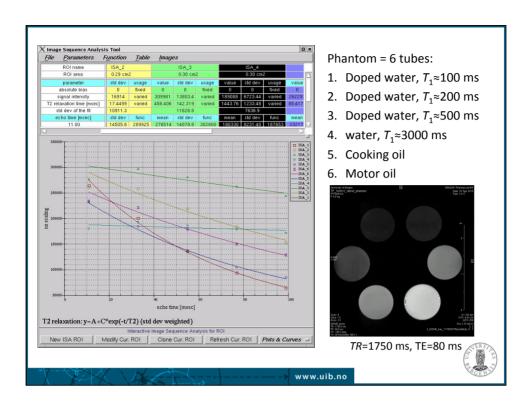
• H_2O , liquids have long T_2

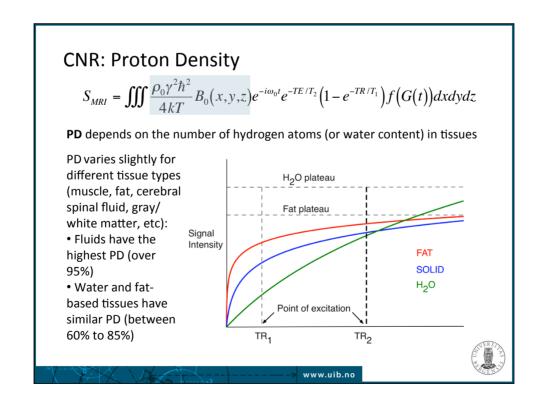
- Fats have intermediate T_2
- Solids have short T₂

CNR: T₂- Weighted Images

- T_2 -weighted images produce contrast based on differences in T_2 -relaxation times of tissues
- For T_2 contrast (T_2 -weighting), we need:
 - Long TR times to minimize T_1 weighting
 - Long TE times times to enhance T_2 weighting

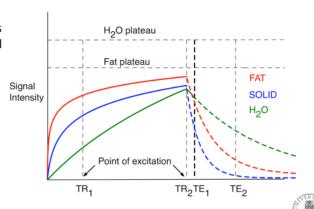
$$S_{MRI} \propto \rho_0 e^{-TE/T_2}$$




www.uib.no

CNR: T₂- Weighted Images

- Demonstration:
 - Collect an image of the contrast phantom:
 - Use spin-echo sequence with long TR (1750 ms) and long TE (80 ms)
 - Observe contrast between different samples
 - Explain


CNR: Proton Density

$$S_{MRI} = \iiint \frac{\rho_0 \gamma^2 \hbar^2}{4kT} B_0(x, y, z) e^{-i\omega_0 t} e^{-TE/T_2} \Big(1 - e^{-TR/T_1} \Big) f(G(t)) dx dy dz$$

PD depends on the number of hydrogen atoms (or water content) in tissues

PD varies slightly for different tissue types (muscle, fat, cerebral spinal fluid, gray/ white matter, etc):

- Fluids have the highest PD (over 95%)
- Water and fatbased tissues have similar PD (between 60% to 85%)

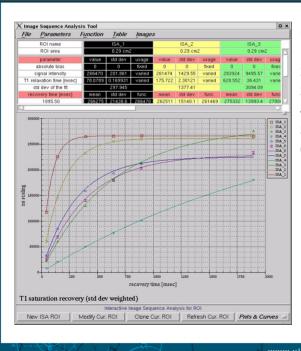
www.uib.no

CNR: PD- Weighted Images

- PD-weighted images produce contrast based on differences in PD of tissues
- For PD contrast (PD-weighting), we need:
 - Long TR times to allow for complete recovery of magnetization (even for longest T_1 components) and minimize T_1 weighting
 - Short TE times times to minimize T₂ weighting

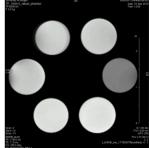
 $S_{MRI} \propto \rho_0$

- Note, that pure PD contrast is not achievable in practice, since we would need:
 - Infinitely long TR times
 - TE times equal to 0
- Proton density weighting = We put less weight on T₁ and T₂ by lengthening TR and shortening
 TE, thus giving more weight to proton density


CNR: PD- Weighted Images

• Demonstration:

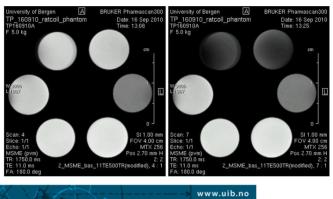
- Collect an image of the contrast phantom:
 - Use spin-echo sequence with long TR (1750 ms) and short TE (11 ms)
- Observe contrast between different samples
- Explain



www.uib.no

Phantom = 6 tubes:

- 1. Doped water, $T_1 \approx 100 \text{ ms}$
- 2. Doped water, $T_1 \approx 200 \text{ ms}$
- 3. Doped water, $T_1 \approx 500 \text{ ms}$
- 4. water, *T*₁≈3000 ms
- 5. Cooking oil
- 6. Motor oil



TR=1750 ms, TE=11 ms

CNR: PD- Weighted Images with Fat-Suppression

• Demonstration:

- Collect an image of the contrast phantom using fat suppression:
 - Use spin-echo sequence with long TR and short TE
- Observe contrast between different samples
- Explain

CNR: Flip Angle

- Flip angle determines contrast in gradient-echo sequence when TR is much shorter than T_1 (FLASH).
- See slide on FLASH for more details

E S

CNR: Contrast Agents

- Contrast agents alter relaxation times of water/tissue => enhance contrast in the MR images
- Three main types of exogenous contrast agents:
 - Gadolinium, Gd (Omniscan, Magnevist, Dotarem, etc...): paramagnetic
 - Iron oxide (Feridex): superparamagnetic
 - Manganese (Mn-DPDP): paramagnetic
- Paramagnetic contrast agents are primarily used as T₁shortenig agents => signal enhancement on T₁-weighted
 images
- Superparamagnetic contrast agents are primarily used as T₂/ T₂* -shortening agents => signal drop/void on T₂-weighted images

www.uib.no

CNR: Contrast Agents Theory

- Effect of contrast agent on tissue relaxation times is best described using relaxation rates: $R_1=1/T_1$, $R_2=1/T_2$
- · Relaxation rates are additive
- In the presence of contrast agent, the new relaxation rate is:

$$R' = R + rC = 1/T' + rC$$

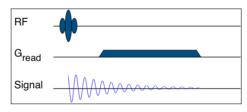
R'is the relaxation rate is the presence of contrast agent
R is the original relaxation rate (e.g., of tissue, water, etc...)
C is the concentration of contrast in tissue, in mM (mMolar = mmol/L)
r is specific relaxivity of the contrast agent, in mM/s (4mM/s for Gd)

CNR: Contrast Agents Theory Cont.

- Example:
 - We would like to create a 50 ml phantom with T_1 =200ms
 - We have 5 ml of Dotarem, with concentration of 500mM
 - The relaxivity of Dotarem is 4/mMs.
 - The T_1 of pure water at 7T is around 3sec.
- · We, first compute the concentration of solution:

$$C = \frac{R'_1 - R_1}{r_1} = \frac{(1/0.2 - 1/3)/s}{4/\text{mMs}} = 1.167\text{mM}$$

• Then, we compute the volume of contrast agent we need:

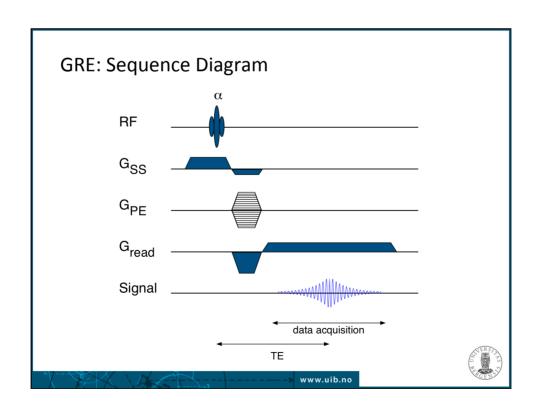

$$C_{sol}V_{sol} = C_{Gd}V_{Gd} \Rightarrow V_{Gd} = \frac{C_{sol}V_{sol}}{C_{Gd}}$$

$$V_{Gd} = \frac{1.167*50}{500} \text{mM} = 0.117 \text{ml} = 117 \mu \text{l}$$

www.uib.no

Pulse Sequence Diagrams

- Is a simple means of showing how the RF (excitation) and gradient pulses (spatial encoding) are applied
- Horizontal axis = time, vertical axis = amplitude
- From the sequence diagram we can get the following info:
 - Timing parameters: TE, TR, diffusion time, etc
 - RF parameters: shape, flip angle α .
 - Gradient parameters: strength and duration
 - Knowledge of how we transverse the k-space

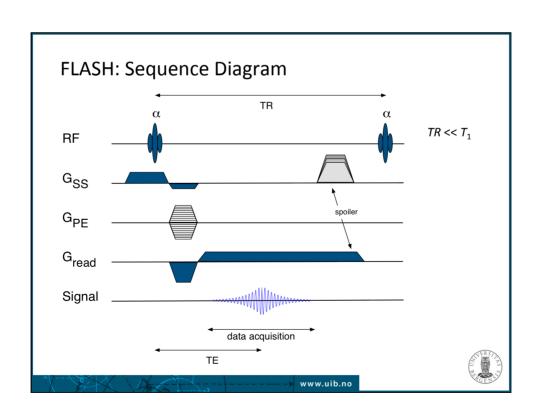


Gradient Echo Sequence or GRE

- Echo is formed by de-phasing and re-phasing of an MR signal by an imaging gradient => gradient echo
- Effect of magnet inhomogeneities and local susceptibility changes are NOT compensated (T₂* decay)
- Can give PD, T₁, T₂* contrast (in special cases also T₂)
- RF pulse (α) can be any value between 0° and 90°
- Speed is achieved by using a small flip angle and short TR
- Three main groups of gradient echo sequences:
 - Spoiled or incoherent GE (e.g., FLASH)
 - Rewound or coherent GE (e.g., FISP)
 - Steady state/contrast enhanced (e.g., SSFP)
- Ideally suited for studies in which speed is important: dynamic contrast MRI, angiography, breath-hold studies and 3D imaging (3D FT).

Fast Low Angle SHot or FLASH $(T_1 >> TR)$

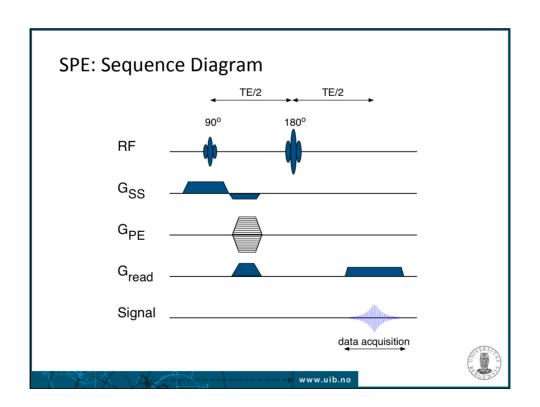
• The stead-state MR signal in FLASH is:


$$S_{MRI} = \rho \frac{\sin \alpha \cdot \left(1 - e^{-\frac{TR}{T_1}}\right) \cdot e^{-\frac{TE}{T_2^*}}}{1 - \cos \alpha \cdot e^{-\frac{TR}{T_1}}}$$

- Flip angle α also determines image contrast
- For each value of T₁ there is an optimum flip angle at which MR signal will be at its maximum => Ernst angle

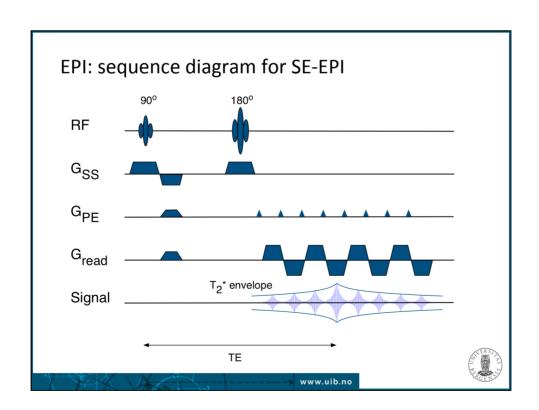
$$\alpha_{Ernst} = \cos^{-1} \left(e^{-\frac{TR}{T_1}} \right)$$

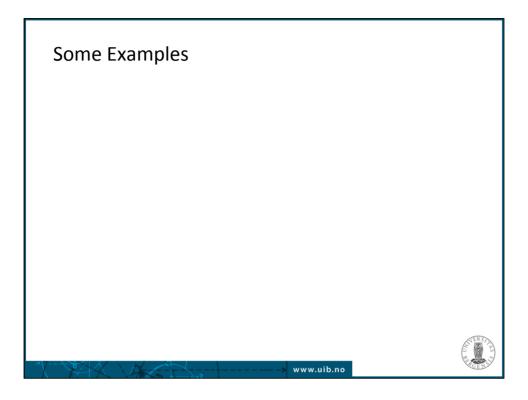
- For α < Ernst angle => PD weighting
- For α > Ernst angle => T_1 weighting

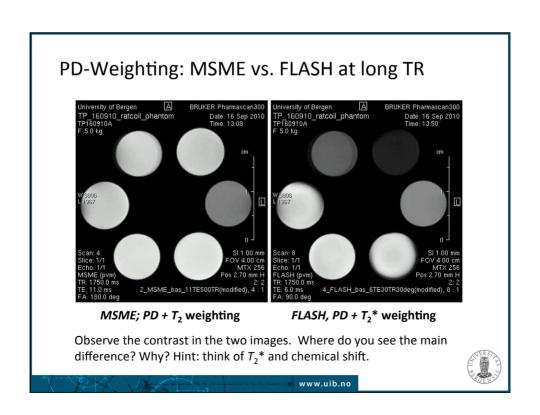


Spin Echo Sequence or SPE

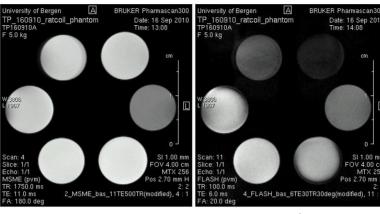
- Echo is formed by a 180^o pulse => spin echo
- Effect of magnet inhomogeneities and local susceptibility changes are compensated (T₂ decay)
- Can give PD, T₁, T₂ contrast
- RF pulse (α) is a 90° pulse
- Speed is achieved by using multiple echoes to collect several lines of k-space in a single shot (within *TR* period) => segmentation (fast or turbo SE)
- Two main groups of spin echo sequences:
 - Inversion recovery SE (e.g., FLAIR)
 - Fast or Turbo SE (e.g., RARE, MSME)
- Ideally suited for studies in which susceptibility effects are big: near air/ tissue interfaces in lungs, near bone/tissue interfaces to study joints...



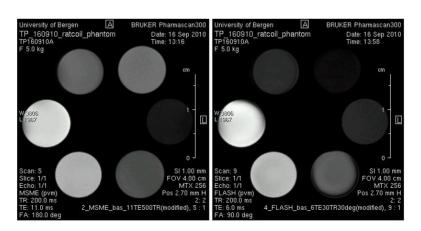



Echo Planar Imaging EPI (SE-EPI or GE-EPI)

- The fastest pulse sequence available => the entire image can be collected in less than 100 ms
- Two main groups of EPI sequences:
 - Spin-echo EPI
 - Gradient echo EPI
- Can be single-shot or multi-shot
- In single-shot case, the whole of *k*-space is sampled with gradient echoes under a single spin echo (in SE-EPI) or under an FID (in GE-EPI)
- Ideally suited for studies in which speed is important: dynamic, diffusion-weighted imaging (EPI-DTI) and fMRI.



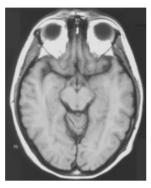
PD-Weighting: MSME vs. FLASH at short TR, small $\boldsymbol{\alpha}$

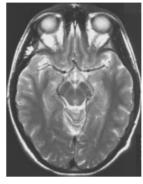

 $MSME; PD + T_2$ weighting

FLASH, PD + T_2 * weighting

Observe the contrast in the these images as compared to the previous two. Why is the SNR of the right image so much worse now? Hint: think about *TR* and the total scanning time.

www.uib.no


$\text{T}_{\text{1}}\text{-Weighting: MSME vs. FLASH at short TR, large }\alpha$


Observe the contrast in the these two images. Again, where do you see the main difference? Why?

THE STATE OF THE S

T_1 and T_2 Weighted Images, Comparison

<u>T1 weighted image</u> short TR, short TE "Free water is black"

<u>T2 weighted image</u> long TR, long TE "Free water is white"

www.uib.no

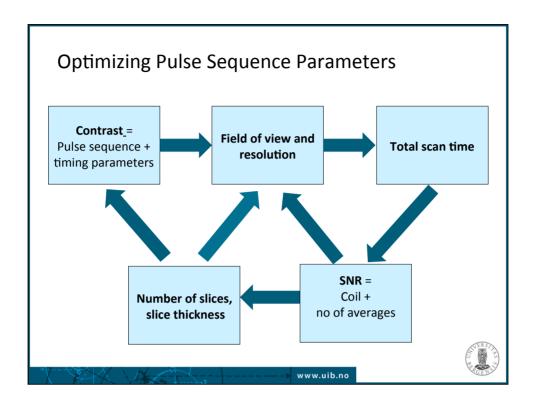
Section Summary: Choice of TR and TE for SE Sequences

TR	TE	TE
	Short	Long
Short	T ₁ -wt	
Long	PD-wt	T ₂ -wt

Section Summary:

Choice of TE and α for GE Sequences with short TR $\,$

α (flip angle)	TE	TE
	Short	Long
Small	PD-wt	T ₂ *-wt
Large	T ₁ -wt	



www.uib.no

Which Sequence is Right for My Application?

- T₁-weighted sequences:
 - Anatomy
 - When using a T_1 contrast (DCE-MRI)
 - Fat imaging
- T₂-weighted sequences:
 - Pathology (tumors, edema, etc)

